Review of the California Ambient Air Quality Standard for Nitrogen Dioxide

May 8, 2006

Sacramento, California

Air Resources Board

Office of Environmental Health Hazard Assessment

Overview

- Why are we reviewing the State Nitrogen Dioxide (NO₂) standard?
- What are the regulatory steps in a standard review?
- What are the health effects of NO₂?
- What is the draft recommendation for revising the NO₂ standard?
- What is the health basis of the recommendation?

Why Are We Reviewing the State NO₂ Standard?

- Protect public health
- Comply with State law
- Address requirements of Children's Environmental Health Protection Act (SB25, Escutia, 1999)

Results of 2000 AAQS Prioritization Process

Priority Pollutant	Review Schedule	
PM10 (including sulfates)	2002	
Ozone	2005	
Nitrogen dioxide	2006	

Adapted from Staff Report Entitled "Adequacy of CA Ambient Air Quality Standards: Children's Environmental Health Protection Act," December 2000.

Current NO₂ Standards (ppm)

	One Hour	Annual
California	0.25	<u></u>
US EPA	_	0.053

What Are the Regulatory Steps in a Standard Review?

What Are the Regulatory Steps in a Standard Review?

What Are the Elements of an Ambient Air Quality Standard?

- Air Quality Standard: legal definition of clean air
- Standards have:
 - Pollutant definition
 - Concentration
 - Averaging time
 - Monitoring Method

Standard Setting Does Not Include

- Attainment designation
- Feasibility of controls
- Cost of controls
- Implementation of controls

Why Are We Concerned about NO₂?

- Based on the priority review under the Children's Environmental Health Protection Act
- Current standard may not adequately protect public health, including the health of infants and children
- NO₂ commonly found pollutant in outdoor air

Sources and Levels

- An outdoor and indoor pollutant
- Product of combustion sources
- Also produced from nitric oxide (NO), a product of combustion, and reactive hydrocarbons

Oxides of Nitrogen Emission Trends (tons/day) Statewide Annual Average

- Other Mobile
- □ On-Road
 - Mobile
- Area-w ide
 - Sources
- StationarySources

Year

South Coast Air Quality Trends One-hour NO₂ (ppm)

South Coast Air Quality Trends Annual Average NO₂ Concentration (ppm)

OEHHA Recommendation to Revise the California Nitrogen Dioxide Standard

- Retain Nitrogen Dioxide as the pollutant definition
- Lower the current 1-hr standard of 0.25 ppm, to 0.18 ppm, not to be exceeded
- Establish a new annual average standard of 0.030 ppm, not to be exceeded
- Retain the chemiluminescence monitoring method

Existing Standards and Recommendations

Averaging time	CA (1992)	Federal (1995)	OEHHA Rec
1-hour	0.25 ppm (470 μg/m³)	<u></u> -	0.18 ppm
Annual average		0.053 ppm (100 μg/m³)	0.030 ppm

Evidence on the Health Effects of Nitrogen Dioxide Provided from Different Types of Studies

- Controlled human exposure
- Animal toxicology
- Epidemiology

Controlled Human Exposure Studies

- Exposures of human volunteers in a laboratory setting
- Responses studied: respiratory symptoms, lung function, inflammation (lung or blood), cardiovascular effects
- Typical subjects: healthy adults or mild asthmatics

Controlled Human Exposure Studies

- Advantages
 - precise measures of exposure and response
- Limitations
 - few studies on more vulnerable populations
 - small sample size and studied doses
 - few studies of pollutant mixtures
 - cannot predict effects of chronic exposures

Controlled Human Studies of NO₂: Lowest Concentrations Showing Effects

- Healthy Subjects: no effects below 1 ppm
- Asthmatics
 - increased airway reactivity at 0.2 0.3 ppm (30 min-2 hr)
 - enhanced airway response to allergen at 0.26 ppm (15-30 min)
 - potential to increase asthma symptoms

Controlled Human Studies (cont.):

- Subjects with chronic lung disease
 - Decreased lung function at 0.3 ppm
- Limited data for children, elderly and those with cardiovascular disease
- Other considerations:
 - Increased airway reactivity with SO₂ + NO₂?
 - Variability in response?
 - Effects at longer durations?

Findings From Animal Studies

- Prolonged repeated exposure of young animals during lung development show changes in lung structure
- In animal models of allergic asthma, exposure to high concentrations of NO₂ produce increased markers of allergic inflammation
- Animal studies support lung toxicity

Epidemiologic Studies

Advantages

- Evaluate exposures and responses of free-living populations over a wide range of individuals, behaviors, and subgroups, including susceptible individuals
- Examine both short and long-term exposures

Limitations

- Difficult to determine relevant exposure averaging time
- Need to account for other factors such as copollutants

Findings From Epi Studies

- Outdoor studies short term exposure (24-hr to several days)
 - Associations reported for mortality, hospital admissions and ER visits, cardiac arrhythmias.
 - Respiratory effects most consistent: both adults and children.
- Outdoor studies (including traffic) long term exposure (months to years)
 - Asthma exacerbations
 - Reduced lung function and lung growth
 - Low birth weight
 - Respiratory symptoms

Findings From Epi Studies (cont.)

- Indoor studies long term exposure (weeks to months): (gas stoves and measured NO₂):
 - Respiratory symptoms among asthmatics and infants at risk of asthma

Key epidemiologic studies showing an effect of NO₂: mortality and morbidity

= Overall average NO₂ in multi-city study

Basis for OEHHA Recommendations

SB 25 Requires Special Considerations for Infants and Children

- 1. Exposure patterns: higher exposures per body weight and more time spent outdoors
- 2. Susceptibility: exposure may impact lung development and function
- 3. Interactions: possible enhanced NO₂ effect with SO₂ (chamber studies) and with PM₁₀ (epi studies)

Basis for OEHHA NO₂ 1-hr standard of 0.18 ppm

- 1. Includes additional studies since last review in 1992
- 2. Increased airway reactivity in asthmatics at 0.2 –0.3 ppm 30 min-2 hr
- 3. Enhanced allergic response in asthmatics at 0.26 ppm for 15-30 min

Basis for NO₂ 1-hr standard (cont.)

4. Add margin of safety for:

- Children and other susceptible populations (e.g. more severe asthmatics)
- Possible effects at lower concentrations
- Proposing 1-hr avg standard but effects observed after 15-30 minutes
- Some of the effects observed in short-term epi studies may be due to 1-hr peaks

Basis for OEHHA Annual average Standard of 0.030 ppm

- 1. Potential effects of NO₂ on serious outcomes including mortality, ER, hospitalization with long term averages of 0.025 0.035 ppm
- 2. Children's Health study found decreased lung function growth in areas with annual averages of 0.030 to 0.040 ppm

Basis for Annual average (cont.)

Important to lower full distribution not just peak 1-hr

 Tox shows alterations in lung structure in young animals due to long term exposures

Summary OEHHA Recommendation for Nitrogen Dioxide

- Retain Nitrogen Dioxide as the pollutant definition
- Decrease the current 1-hr standard to 0.18 ppm, not to be exceeded
- Establish a new annual average of 0.030 ppm, not to be exceeded
- Retain the chemiluminescence monitoring method

Timeline for NO₂ Review

April 14th Release of Draft Report

May 8, 11th Public Workshops

May 31st Public Comments Due

June 12-13 AQAC Meeting

July Public Comments

October, 2006 Final recommendations to Board (tentative)

Contact Information

- Nitrogen Dioxide standard review website: http://www.arb.ca.gov/research/aaqs/no2-rs/no2-rs.htm
- Richard Bode, Branch Chief rbode@arb.ca.gov; 916-323-8413
- Linda Smith, Manager Ismith@arb.ca.gov; 916-327-8225
- Norman Kado nkado@arb.ca.gov; 916-323-1500

